
4321

Fast Sublinear Sparse Representation using Shallow
Tree Matching Pursuit

Ali Ayremlou, Member, IEEE, Thomas Goldstein, Member, IEEE Ashok Veeraraghavan, Member, IEEE and
Richard Baraniuk, Fellow, IEEE

Abstract—Sparse approximations using highly over-complete
dictionaries is a state-of-the-art tool for many imaging applica-
tions including denoising, super-resolution, compressive sensing,
light-field analysis, and object recognition. Unfortunately, the
applicability of such methods is severely hampered by the
computational burden of sparse approximation: these algorithms
are linear or super-linear in both the data dimensionality and
size of the dictionary.

We propose a framework for learning the hierarchical struc-
ture of over-complete dictionaries that enables fast computation
of sparse representations. Our method builds on tree-based
strategies for nearest neighbor matching, and presents domain-
specific enhancements that are highly efficient for the analysis of
image patches. Contrary to most popular methods for building
spatial data structures, out methods rely on shallow, balanced
trees with relatively few layers.

We show an extensive array of experiments on several ap-
plications such as image denoising/superresolution, compressive
video/light-field sensing where we practically achieve 100-1000x
speedup (with a less than 1dB loss in accuracy).

I. INTRODUCTION

COMPRESSIVE sensing and sparse approximation using
redundant dictionaries are important tools for a wide

range of imaging applications including image/video denoising
[1], [2], [3], superresolution [4], [5], compressive sensing
of videos [6], [7], [8], light-fields [9], [10], hyperspectral
data [11], and even inference tasks such as face and object
recognition [12].

In spite of this widespread adoption in research, their
adoption in commercial and practical systems is still lacking.
One of the principal reasons is the computational complexity
of the algorithms needed: these algorithms are either linear or
super-linear in both the data dimensionality and size of the
dictionary. Common applications requiring dictionaries with
over 105 atoms require computation times that may exceed
several days.

As an illustrative example, consider the problem of com-
pressive video sensing using overcomplete dictionaries [8].
In [8], an overcomplete dictionary consisting of 105 video
patches was learned and utilized for compressive sensing
using orthogonal matching pursuit (OMP). Reconstruction for
a single video (36 frames) using 105 dictionary atoms takes
more than a day, making these methods impractical for most
applications and highlighting the need for significantly faster
algorithms.

A. Motivation and Related Work
Algorithms for sparse approximation can be broadly classi-

fied into two categories: those based on convex optimization,

A. Ayremlou, T. Goldstein, A. Veeraraghavan and R. Baraniuk are with the
Department of Electrical and Computer Engineering, Rice University, Hous-
ton, TX 77005 USA (e-mail: {a.ayremlou, tag7, vashok, richb}@rice.edu).

Level 1

c1

c4

c3

 c2

c6

c5

Level 2

c3

c3

c1

c2

Level 3

c2

c1

c3

 Test vector

Number of dot

products Matching

Pursuit: 625

Shallow Matching

Pursuit:15

Fig. 1: Shallow Tree representations match a test vector(black
star) to a dictionary by traversing a shallow (3 level) tree in
which each node may have many children.

and greedy pursuit algorithms [13]. Several attempts have been
made to develop fast algorithms for sparse regularization based
on convex optimization [14], [15], [16]. In spite of the progress
made, these algorithms may still be slow when the size of the
dictionary and data dimensionality become large.

Fast Matching Pursuit: Matching Pursuit(MP) and its
many variants [13][17] build sparse approximations by se-
quentially choosing atoms from a dictionary, and adding them
one-at-a-time to the current ensemble. On each stage, the
target vector is approximated using the current ensemble, and
the approximation error or “residual” is measured. Next, an
atom is selected from the dictionary that best approximates the
current residual. The computational bottleneck of this process
is finding the dictionary atom closest to the residual. Nearest
Neighbor(NN) search methods face a similar bottleneck that
has been aggressively tackled using Approximate Nearest
Neighbor (ANN) search algorithms [18], [19], [20]. Most
ANN search methods organize data into a tree structure that
enables fast retrieval at query time [20] . Typically a very deep
tree with binary branching at every level is learned.

Hierarchical/tree approaches have been used in many ap-
plications to speed up dictionary matching. In [21], Batch
Tree Orthogonal Matching Pursuit (BTOMP) is used to build

ar
X

iv
:1

41
2.

06
80

v1
 [

cs
.C

V
]

 1
 D

ec
 2

01
4

4322

a feature hierarchy that yields a better classification. The
authors of [22] construct trees using “kernel descriptors” for
the same application. Hierarchical methods for representing
image patches are studied in [23], [24].The authors of [25]
Random prejections for dimensionally reduction are used in
[26] to build hierarchical dictionaries. In [27] binary hierar-
chical structure and PCA (Principal Component Analysis) are
combined to reduce the complexity of the OMP.

Unfortunately, such a deep tree does not provide a beneficial
trade-off between accuracy and speedup for dictionaries, since
these atoms tend to be highly coherent. Further, because they
require backtracking and branch-and-bound methods, typical
ANN techniques such as kd-trees do not provide reliable
runtime guarantees.

In contrast, we organize the dictionary using a shallow
tree (typically 3 levels) as shown in Figure 1. Our tree
construction scheme is such that the resulting tree represents
a balanced, hierarchical clustering of the atoms. Finally, we
devise a sublinear time search algorithm for identifying the
support set that provides the user with precise control over the
computational speedup achieved while retaining high fidelity
approximations.

B. Contributions
We propose an algorithm for balanced hierarchical cluster-

ing of dictionary atoms. We exploit the clustering to derive a
sublinear time algorithm for sparse approximation. Our meth-
ods has a single parameter α that provides fine-scale control on
the computational speed-up achieved, enabling a natural trade-
off between accuracy and computation. We perform extensive
experiments that span numerous applications where shallow
trees achieve 150-1000x speedup (with a 1dB of less loss in
accuracy) compared to conventional methods.

II. PROBLEM FORMULATION
A. Sparse Approximation using Dictionaries

Our approach to fast dictionary coding uses Matching
Pursuit (MP), which is a greedy method for selecting the
constituent dictionary elements that comprise a test vector.
MP is a commonly used scheme for this application because
dictionary representations of image patches are extremely
sparse. For computing representations involving large numbers
of atoms (e.g. for representing entire images rather than just
patches) more complex pursuit algorithms have been proposed
[28] that we do not consider here.

Matching Pursuit: MP is a stage-wise scheme that builds
a signal representation one atom at a time. Algorithm 1 is
initialized by declaring the “residual” r to be equal to the test
vector x. This residual represents the component of x that has
not yet been accounted for by the sparse approximation. In
each iteration of the main loop an atom enters the representa-
tion. The atom is selected by computing inner products with
all (normalized) columns in D = {di} and selecting the atom
with the largest inner product. The residual is then updated by
subtracting the contribution of the entering dictionary element.

MP Computational Complexity: MP requires the compu-
tation of m inner products on the “matching” stage of each
iteration. Since each inner product requires O(n) operations
and there are K stages, the overall complexity is O(mnK).

Data: Normalized Dictionary D ∈ Rn×m, Input vector
x ∈ Rn, Sparsity level K ∈ Z+

Result: Sparse vector s ∈ Rm with x ≈ Ds
begin

r = x
/* Main Loop */
for k = 1 to K do

i← argmaxi |di · x|
si = di · x
r ← r − disi

end
end

Algorithm 1: Maching Pursuit

Note that this complexity is dominated by m, the number of
atoms in the dictionary. For most imaging applications, D is
highly over-complete. A typical image denoising method may
operate on 16 × 16 image patches (n = 16 × 16 = 256), use
K = 5 atoms per patch, and require m = 100, 000 dictionary
elements. For video or light field applications, m may be
substantially larger. the computational burden of handling large
dictionaries is a major roadblock for use in applications.

B. Problem Definition and Goals
We consider variations on MP that avoid the brute-force

O(mn) matching of dictionary elements. Our method is based
on a hierarchical clustering method that organizes an arbitrary
dictionary into a tree. The tree can be traversed efficiently to
approximately select the best atom to enter the representation
on each stage of MP. Our method is conceptually related to
ANN methods (such as k-d trees). However, unlike conven-
tional ANN schemes, the proposed method is customized to
the problem of dictionary matching pursuit, and so differs from
conventional ANN methods in several ways. The most signif-
icant difference is that the proposed method uses “shallow”
trees (i.e. trees with a very small number of layers), as opposed
to most ANN methods with use very deep trees with only two
branches per level.

III. ALGORITHM FOR HIERARCHICAL CLUSTERING
The proposed method relies on a hierarchically clustering

that organizes dictionaries trees. Each node of the tree repre-
sents a group of dictionary elements. As we traverse down the
tree, these groups are decomposed into smaller sub-groups.
To decompose groups of atoms into intelligent components,
we use an algorithm based on k-means. To facilitate fast
searching of the resulting tree, we require that each node
be balanced – i.e., all nodes at the same level of the tree
represent the same number of atoms. Conventional k-means,
when applied to image dictionaries, tends to produce highly
unbalanced clusters, sometimes with as many as 90% of atoms
in a single cluster. For the purpose of tree search, this is clearly
undesirable as descending to this branch of the tree does not
substantially reduce the number of atoms to choose from. For
this reason, the proposed clustering uses “balanced” k-means.

A. Balanced Clustering
We now consider the problem of uniformly breaking a set

of elements into smaller groups. We begin with a collection of

4323

m atoms to be decompose into k groups. We apply k-means
to the atoms. We then examine only the “large” clusters that
contain at least bm/kc atoms and discard the rest. For each
large cluster, we keep the bm/kc nearest atoms to the centroid,
and discard the remaining atoms. Suppose k̂ such clusters are
identified. The algorithm is then repeated by applying k-means
to the remaining unclustered atoms to form k − k̂ groups.
Once again, groups of at least bm/kc atoms are identified, and
reduced to a cluster of exactly bm/kc elements. This process
is repeated until the number of remaining atoms is less than
bm/kc, at which point the remaining atoms form their own
last cluster.

B. Hierarchical Clustering
The clustering method in Section III-A can be used to

organize dictionaries into hierarchical trees. We begin with a
parent node containing all dictionary atoms. The dictionary is
then decomposed into k1 balanced groups. Each such groups
is considered to be a “child” of the parent node. Each child
node is examined, and the atoms it contains are partitioned
into k2 groups which become its children. This process is
repeated until the desired level of granularity is attained in the
bottom-level (leaf) nodes of the tree.

C. Fast Matching using Shallow Tree
Using the tree representation of the dictionary, ANN

matches can be found from a given test vector x. The goal is
to find the dictionary entry with the largest inner product with
x. The tradeoff between precision and speed is controlled by a
parameter α. The search algorithm begins by considering the
top-level node in the tree. The test vector x is compared to the
centroid of the cluster that each child node represents. Using
the notation of Section III-B, there are k1 such clusters. We
retain the dαk1e clusters with the largest inner products with
the test vector. The search process is then called recursively on
these nearby clusters to approximately find the closest atom
in each cluster. The resulting dαk1e atoms are compared to x,
and the closest atom is returned.

Function STMP(N , x)
Data: Tree Node N , Input vector(x ∈ Rn)
Result: Approximate nearest dictionary atom
begin

Let {Ci}ki=1 denote N ’s children
Retrieve centroids {ci}ki=1 of {Ci}
if {Ci} have no children then

Return ci that maximizes |x · ci|
end
Let {Cmini }dαkei=1 denote the dαke children with
maximal |cmini · x|
Return cmini that maximizes |x · STMP(Cmini , x)|

end
Algorithm 2: Shallow Tree Matching Pursuit

Computational Complexity: At the first level of the tree,
Algorithm 2 must compute k1 inner products. On the second
level of the tree, αk1k2 inner products are computed, and
α2k1k2k3 on the third, etc. It total, the number of inner

Fig. 2: The number of inner products needed for matching
scales sublinearly with dictionary size.

products is given by
∑L
i=1 α

i−1 ∏i
j=1 kj . As long as k

remains bounded and α < 1, this grows sub-linearly with
m. In particular, if we choose ki = 1/α for all i > i∗, then
the number of inner products is O(log(m)) and the total com-
plexity (including the cost of inner products) is O(n log(m)).
Figure 2 shows the inner products needed to match an atom
for a variety of parameter choices and dictionary sizes. Note
the sublinear scaling with dictionary size.

Construction of Shallow trees: For all experiments in this
article we use trees with only 3 levels. We choose k1 = 100,
k2 = k3 = 10, and α = 0.1. Because we have chosen k2, k3 =
1/α, the number of inner products that are computed does not
grow as we descent lower into the tree.

We call the proposed method a “shallow tree” algorithm
because the hierarchical clustering generates trees with only
3 levels and 100 branches on the first node. This is in sharp
contrast to conventional tree-based nearest neighbor methods
(see e.g., [19]) that rely on very deep trees with only two
branches per node. For use with image dictionaries, shallow
trees appear to perform much better for patch matching than
conventional off-the-shelf nearest neighbor methods.

IV. EXPERIMENTAL RESULTS

We compare Shallow Tree Matching Pursuit with other
algorithms in terms of both run-time and reconstruction quality
for a variety of problems. The main conclusion from the
experiments is that STMP provides a 100-1000x speedup
compared to existing sparse regularization methods with less
than 1dB loss in performance.

We compare to the following techniques:
STMP: Shallow Tree Matching Pursuit with three different

values of α, i.e., α = 1
N , α = 0.1 and α = 0.2. Lower

α results in faster run-time, while larger α results in better
approximations. Our implementation is in matlab.

OMP: Orthogonal Matching Pursuit (OMP) is a popular
pursuit algorithm used in several vision applications. We use
the mex implementation available as a part of the K-SVD
software package [29].

SPGL1: A matlab solver for large scale L1 regularized least
squares problems [15]. This code achieves sparse coding via
basis pursuit denoising problems.

FPC-AS: A matlab solver for L1 regularized least squares
based on fixed point continuation [16]. Due to impractically
slow performance FPC-AS is only tested in imaging problems.

GPSR: A matlab solver for sparse reconstruction using
gradient projections [14].

4324

Original

Proposed (𝛼 = 1/𝑘𝑖) Proposed (𝛼 = 0.1) Proposed (𝛼 = 0.2)

Noisy OMP

10dB 13.62dB

14.75dB 15.03dB 15.11dB

100 min

0.2 min 0.7 min 2 min

Fig. 3: Sample results for image denoising compared to other methods.

Original Low Resolution OMP SPGL 1 GPSR Proposed(𝛼 = 1/𝑘𝑖)

18.29dB 18.61dB 18.60dB 18.23dB

Fig. 4: Image Super-Resolution(4x): Proposed method has same performance with significantly faster run-times.

Denoising Super-Resolution(4x)
Berkeley1 Berkeley2 Berkeley3 Berkeley1 Berkeley2 Berkeley3

Dic. PSNR Time PSNR Time PSNR Time Run PSNR Time PSNR Time PSNR Time Run
Method Size (dB) (min) (dB) (min) (dB) (min) Time (dB) (min) (dB) (min) (dB) (min) Time
Proposed (α = 1/ki) 40k 18.55 0.07 20.46 0.07 17.02 0.07 1x 17.16 0.02 18.23 0.02 14.96 0.02 1x
Proposed (α = 0.1) 40k 18.79 0.21 20.70 0.21 17.76 0.21 3x 17.42 0.04 18.51 0.04 15.15 0.04 2x
OMP 40k 18.37 21.41 19.89 21.46 19.27 17.37 286x 16.94 0.55 18.29 0.56 15.08 0.57 28x
SPGL1 4k 14.92 95.81 16.06 90.42 16.34 80.96 1272x 17.27 13.88 18.61 13.00 15.30 13.52 673x
FPC AS 4k 13.64 124.2 14.85 123.0 14.85 123.0 1763x 17.24 2.44 18.61 2.58 15.30 2.56 126x
GPSR 4k 18.72 30.29 20.40 26.55 19.36 39.81 460x 17.24 11.37 18.60 9.56 15.26 28.04 816x
KD-Tree 40k 18.06 101.7 19.63 101.7 17.21 101.7 1452x 16.77 2.66 17.96 2.22 14.68 2.23 33x
ANN 40k 18.03 24.58 19.59 25.41 16.60 25.29 358x 16.77 0.83 17.96 0.81 14.68 0.83 11x

TABLE I: Run-Time comparisons for Image Denoising and Image Super-Resolution(4x): STMP is 100-1000x faster with a 1
dB loss in PSNR.

KD-Tree: We use the built-in matlab function for fast
approximate nearest neighbor search using kd-trees to speed
up traditional matching pursuit.

ANN: We use the ANN C++ library for approximate nearest
neighbor matching to speed up traditional matching pursuit
[18].

Other Notes: We sometimes use a smaller randomly sub-

sampled dictionary to test the variational methods in cases
where runtimes were impractically long (> 24 hours). All
experiments begin by breaking datasets into patches using
a sliding frame. A restored image is then synthesized by
averaging together the individual restored patches.

4325

Original Proposed (𝛼 = 1/𝑘𝑖) Proposed (𝛼 = 0.1) Proposed (𝛼 = 0.2)

Noisy OMP SPGL1 GPSR

18.53dB 18.98dB 19.30dB

10dB 18.51dB 13.46dB 16.34dB

Fig. 5: Sample frame shown for video denoising application in comparison to other methods

Proposed (𝛼 = 0.1) Proposed (𝛼 = 0.2) Sub-Sampled Proposed (𝛼 = 1/𝑘𝑖)

15.76dB 18.17dB 18.39dB

SPGL GPSR OMP

17.49dB 18.33dB 13.54dB

Original

Fig. 6: Sample result for pixel-wise coded exposure compressive video sensing showing a frame from recovered video for our
proposed method and OMP

Denoising Video Compressive Sampling
Dogrun Truck Relative Dogrun Truck Relative

Dic. SNR Time SNR Time Run SNR Time SNR Time Run
Method Size (dB) (min) (dB) (min) Time (dB) (min) (dB) (min) Time
Proposed (α = 1/ki) 100k 18.53 0.43 18.76 0.17 1x 18.53 0.43 18.76 0.17 1x
Proposed (α = 0.1) 100k 18.98 1.42 19.10 0.49 3x 18.24 4.00 18.17 3.13 3x
OMP 10k 18.51 60.15 18.36 23.84 140x 16.97 38.33 17.49 8.26 17x
SPGL1 10k 13.46 85.74 19.21 105.87 411x 17.34 80.76 18.33 45.49 50x
GPSR 10k 17.56 33.16 15.80 17.03 88x 15.75 7.95 13.54 23.05 14x
KD-tree 10k 17.17 277.44 16.15 137.78 727x 16.48 17.60 15.90 7.79 10x
ANN 10k 17.13 84.27 16.10 36.28 503x 16.46 13.76 15.89 5.48 7x

TABLE II: Video Denoising and Pixel-wise coded exposure video sensing results: Our method has a run-time thats 100-500x
faster with the same reconstruction quality.

A. Imaging Experiments

Dictionary Construction: A general image dictionary is
constructed from a set of 8 natural test images from the USC-
SIPI Image Database (Barbara, Boat, Couple, Elaine, House,
Lena, Man, and Peppers) using 16 × 16 patches and a shift
of 2 pixels. From each image, a dictionary of 5,000 atoms
is learned using the K-SVD method. These dictionaries were

merged to create a 40,000 atom dictionary. This dictionary was
randomly sub-sampled to create a 4,000 element dictionary for
use with FPC AS and SPGL1. The dictionary was clustered
using the hierarchical scheme of Section III with 100 equally
sized clusters in the first level (k1 = 100), 10 equally sized
cluster in the second level, and 10 equally sized clusters in the
third (final) level (k2 = k3 = 10). Sparse coding is performed

4326

using Algorithm 2.
Image Denoising: Three images were selected from

the Berkeley Segmentation Dataset image numbers
223061,102061, and 253027). Each image was contaminated
with Gaussian white noise to achieve an SNR of 10dB.
Greedy recovery was performed using 10 dictionary atoms
per patch. Sample denoising results are shown in Figure 3.
Time trial results are shown in Table I.

Image Super-resolution: This experiment enhances the
resolution of an image using information from a higher reso-
lution dictionary. We use three test images from the Berkeley
Segmentation Database. Low resolution images are broken into
4 × 4 patches. The low resolution 4 × 4 patches are mapped
onto the 16× 16 dictionary patches for comparison, and then
matched using sparse regularization algorithms 2 with sparsity
K = 3. The reconstructed high-resolution patches are then
averaged together to create a super-resolution image. Sample
super-resolution reconstructions are shown in Figure 4. Time
trails are displayed in Table I.

B. Video
Dictionary Construction: We obtained the dictionaries and

high speed videos used in [30] from the authors for this
experiment. MP experiments were done using a dictionary
of 105 atoms, and variational experiments were done using a
randomly sub-sampled dictionary of 104 atoms. Video patches
of size 7 × 7 × 9 are extracted from video frames. The
dictionary was clustered using the same parameters as the
image dictionary. Sparse coding is performed using Algorithm
2 with α = 0.1.

Video Denoising: Video denoising proceeds similarly to
image denoising. The original 18 frame videos were contam-
inated with Gaussian white noise to have an SNR of 10dB.
Patches of size 7 × 7 × 18 were extracted from the video
to create test vectors of dimension 882. For the “dog” video
patches were generated with a shift of 1 pixel (35673 patches)
while for truck a 3 pixels shift was used (14505 patches).
Sparse coding and recovery was performed using 10 atoms
per patch. Sample frames from denoised videos are shown in
Figure 5 and runtimes are displayed in Table II.

Video Compressive Sampling: We emulate the video
compressive sampling experiments in [30]. This experiment
simulates a pixel-wise coded exposure video camera much like
[30][7]. The pixel-wise coded exposure video camera operates
at 1

9 the frame-rate of the reconstructed video and therefore
results in 1

9 samples/measurements compared to the original
video. For reconstruction, we closely follow the approach of
[30] and reconstruct the video by using patch-wise sparse
coding using the learned dictionary. Sample frames from
reconstructed videos are shown in Figure 6 and runtimes are
displayed in Table II.

C. Light Field Analysis
Dictionary Construction: A dictionary was created for

light field patches using several sample light fields: synthetic
light fields created from the “Barbara” test image as well
as several urban scenes and light field data from the MIT
Media Lab Synthetic Light Field Archive (Happy Buddha,
Messerschmitt, Dice, Green Dragon, Mini Cooper, Butterfly,

R
e
co
n
stru

ct

Fig. 7: Light Field from Trinocular Stereo: 5 × 5 view light
field is recovered using only three views.

and Lucy). Dictionaries are learned on 4-dimensional patches
that consist of an 8x8 pixel grid and a 5x5 view window
(total dimensions per patch is 8x8x5x5 = 1600). By combining
patches from all training data, a dictionary with 146, 000
atoms was built. Again we randomly sampled the dictionary
to generate a small 10, 000 atom dictionary for methods that
were intractably slow when using the full-sized dictionary.

The dictionary was subjected to hierarchical clustering using
the same parameters as the image dictionary, with 100 equally
sized clusters in the first level, 10 equally sized cluster in
second level, and 10 equally sized clusters in third (final) level.
Sparse coding is performed using Algorithm 2 with α = 0.1.

Light-Field Denoising: Denoising experiments were per-
formed using the “Tarot Cards” and “Crystal Ball” datasets
from the Stanford Light Field Archive. We add noise to the
light field to achieve an SNR of 10dB. Patches are extracted
with a 2 pixels shift (15625 patches). Because of the high
dimensionality of light-field patches, sparse coding was done
using a sparsity of 50. Results are displayed in Figure 8 and
Table III.

Light-Field from Trinocular Stereo: In this experiment,
we attempt to reconstruct a light field with 5 × 5 views
from just three cameras (trinocular), much like [31]. The
Lego Knights light field dataset from the Stanford Light Field
Archive we subsampled to retain only the top middle, bottom
left, and bottom right views of the 5 × 5 view grid at each
pixel. Patches of size 8 × 8 × 5 × 5 were then sampled with
2 pixel shift. The observed patch data was mapped onto the
corresponding entries for each dictionary atom, and used for
sparse coding. This reduces the dimension of the test set and
dictionary from 1600 to 1600x(3/25)= 192. Sparse coding
was performed with 10 dictionary atoms per patch. Restored
patches were then averaged to reconstruct the full light field
with 5× 5 views. Results are displayed in Figure 9 and Table
III.

V. DISCUSSION AND CONCLUSIONS

The high performance of shallow trees for dictionary match-
ing seems to contradict the conventional intuition that deeper
tree are better. For image dictionaries, it seems that atoms

4327

10dB 17.04dB 14.98dB

Original Noisy ANN KD-Tree

17.24dB 17.88dB 18.49dB

OMP Proposed (𝛼 = 1/𝑘𝑖) Proposed (𝛼 = 0.2) Proposed (𝛼 = 0.1)

19.04dB

Fig. 8: Sample result for Light Field Denoising showing center view.

10dB 21.97dB 16.20dB

Original SPGL ANN KD-Tree

21.47dB 23.34dB 24.05dB

OMP Proposed (𝛼 = 1/𝑘𝑖) Proposed (𝛼 = 0.2) Proposed (𝛼 = 0.1)

24.43dB

Fig. 9: Sample of light field reconstructed from 3 views. Shown is the middle view.

Denoising Light-Field from Trinocular Stereo
Dic. Tarot Relative Tarot Relative

Method Size SNR(dB) Time(min) Run Time SNR(dB) Time(min) Run Time
Proposed (α = 1/ki) 146k 17.24 2.10 1x 21.47 0.09 1x
Proposed (α = 0.1) 146k 17.88 4.92 2x 23.34 0.25 2x
OMP 10k 19.04 214.36 102x 24.43 86.89 965x
SPGL1 10k 10.71 83.86 40x 22.28 104.06 1156x
GPSR 10k 13.24 24.47 12x 20.48 27.26 302x
KD-Tree 10k 17.04 401.56 191x 21.97 32.73 363x
ANN 10k 14.98 6.63 3.15x 16.20 13.88 154x

TABLE III: Reconstruction of noisy Light Field for 5×5 views and comparison to other methods and light field reconstruction
from 3 views. The proposed method obtain similar quality in much shorter run-time.

are naturally organized into a large number of separated
clusters with fairly uniform separation. By exploiting this
structure at a high level, shallow trees perform highly accurate

matching using relatively few comparisons. In contrast, deep
tree nearest neighbor searches require a smaller number of dot
products to descend to the bottom of the tree. However, these

4328

approaches require branch-and-bound methods that backtrack
up the tree and explore multiple branches in order to achieve
an acceptable level of accuracy. For well clustered data such
as the dictionaries considered here, the shallow tree approach
achieves superior performance by avoiding the high cost of
backtracking searches through the tree.

REFERENCES

[1] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” Image Processing, IEEE
Transactions on, vol. 15, no. 12, pp. 3736–3745, 2006.

[2] M. Protter and M. Elad, “Image sequence denoising via sparse and
redundant representations,” Image Processing, IEEE Transactions on,
vol. 18, no. 1, pp. 27–35, 2009.

[3] J. Mairal, G. Sapiro, and M. Elad, “Learning multiscale sparse represen-
tations for image and video restoration,” DTIC Document, Tech. Rep.,
2007.

[4] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via
sparse representation,” Image Processing, IEEE Transactions on, vol. 19,
no. 11, pp. 2861–2873, 2010.

[5] D. Kong, M. Han, W. Xu, H. Tao, and Y. Gong, “Video super-resolution
with scene-specific priors.” in BMVC, 2006, pp. 549–558.

[6] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar,
K. F. Kelly, and R. G. Baraniuk, “Compressive imaging for video
representation and coding,” in Picture Coding Symposium, 2006.

[7] D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2c2: Programmable
pixel compressive camera for high speed imaging,” in Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE,
2011, pp. 329–336.

[8] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video
from a single coded exposure photograph using a learned over-complete
dictionary,” in Computer Vision (ICCV), 2011 IEEE International Con-
ference on. IEEE, 2011, pp. 287–294.

[9] K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive
light field photography using overcomplete dictionaries and optimized
projections,” ACM TRANSACTIONS ON GRAPHICS, vol. 32, no. 4,
2013.

[10] B. Salahieh, A. Ashok, and M. Neifeld, “Compressive light field imag-
ing using joint spatio-angular modulation,” in Computational Optical
Sensing and Imaging. Optical Society of America, 2013.

[11] M. Li, J. Shen, and L. Jiang, “Hyperspectral remote sensing images
classification method based on learned dictionary,” in 2013 International
Conference on Information Science and Computer Applications (ISCA
2013). Atlantis Press, 2013.

[12] Z. Jiang, Z. Lin, and L. Davis, “Label consistent k-svd: Learning a
discriminative dictionary for recognition,” IEEE, 2013.

[13] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Signals, Systems and Computers, 1993. 1993 Con-
ference Record of The Twenty-Seventh Asilomar Conference on. IEEE,
1993, pp. 40–44.

[14] M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection
for sparse reconstruction: Application to compressed sensing and other
inverse problems,” Selected Topics in Signal Processing, IEEE Journal
of, vol. 1, no. 4, pp. 586–597, 2007.

[15] E. van den Berg and M. P. Friedlander, “SPGL1: A solver for large-scale
sparse reconstruction,” June 2007, http://www.cs.ubc.ca/labs/scl/spgl1.

[16] E. T. Hale, W. Yin, and Y. Zhang, “Fixed-point continuation for
\ell 1-minimization: Methodology and convergence,” SIAM Journal on
Optimization, vol. 19, no. 3, pp. 1107–1130, 2008.

[17] R. Gribonval, “Fast matching pursuit with a multiscale dictionary of
gaussian chirps,” Signal Processing, IEEE Transactions on, vol. 49,
no. 5, pp. 994–1001, 2001.

[18] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923,
1998.

[19] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” in Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on. IEEE,
2006, pp. 459–468.

[20] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” in VISAPP (1), 2009, pp. 331–340.

[21] L. Bo, X. Ren, and D. Fox, “Hierarchical matching pursuit for image
classification: Architecture and fast algorithms,” in Advances in Neural
Information Processing Systems, 2011, pp. 2115–2123.

[22] L. Bo, K. Lai, X. Ren, and D. Fox, “Object recognition with hierar-
chical kernel descriptors,” in Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, June 2011, pp. 1729–1736.

[23] K. Yu, Y. Lin, and J. Lafferty, “Learning image representations from
the pixel level via hierarchical sparse coding,” in Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on, June 2011, pp.
1713–1720.

[24] L. Bo, X. Ren, and D. Fox, “Multipath sparse coding using hierarchical
matching pursuit,” in NIPS workshop on deep learning, 2012.

[25] B. Chen, G. Polatkan, G. Sapiro, D. Blei, D. Dunson, and L. Carin,
“Deep learning with hierarchical convolutional factor analysis,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, no. 8,
pp. 1887–1901, Aug 2013.

[26] Z. J. Xiang, H. Xu, and P. J. Ramadge, “Learning sparse representations
of high dimensional data on large scale dictionaries,” in Advances in
Neural Information Processing Systems, 2011, pp. 900–908.

[27] J.-L. Lin, W.-L. Hwang, and S.-C. Pei, “Fast matching pursuit video
coding by combining dictionary approximation and atom extraction,”
Circuits and Systems for Video Technology, IEEE Transactions on,
vol. 17, no. 12, pp. 1679–1689, Dec 2007.

[28] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery
from incomplete and inaccurate samples,” Applied and Computational
Harmonic Analysis, vol. 26, no. 3, pp. 301–321, Apr. 2008. [Online].
Available: http://arxiv.org/abs/0803.2392

[29] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation
of the k-svd algorithm using batch orthogonal matching pursuit,” CS
Technion, 2008.

[30] D. Liu, J. Gu, Y. Hitomi, M. Gupta, T. Mitsunaga, and S. Nayar,
“Efficient space-time sampling with pixel-wise coded exposure for
high speed imaging,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. PP, no. 99, pp. 1–1, 2013.

[31] K. Mitra and A. Veeraraghavan, “Light field denoising, light field
superresolution and stereo camera based refocussing using a gmm
light field patch prior,” in Computer Vision and Pattern Recognition
Workshops (CVPRW), 2012 IEEE Computer Society Conference on.
IEEE, 2012, pp. 22–28.

http://arxiv.org/abs/0803.2392

